Boundary effects on the nonequilibrium structure factor of fluids below the Rayleigh-Bénard instability.
نویسندگان
چکیده
We consider a horizontal fluid layer between two rigid boundaries, maintained in a stationary thermal nonequilibrium state below the convective Rayleigh-Bénard instability. We derive an explicit expression for the nonequilibrium structure factor in a first-order Galerkin approximation valid for negative and positive Rayleigh numbers R up to the critical Rayleigh number R(c) associated with the appearance of convection. The results obtained for rigid boundaries by the Galerkin-approximation method are compared with exact results previously derived for the case of free boundaries. The nonequilibrium structure factor exhibits a maximum as a function of the wave number q of the fluctuations. This maximum is associated with a crossover from a q(-4) dependence for larger q to a q(2) dependence for small q. This maximum is present at both negative and positive R, becomes pronounced at positive R and diverges as R approaches the critical value R(c).
منابع مشابه
Fluctuations in fluids in thermal nonequilibrium states below the convective Rayleigh-Bénard instability
Starting from the linearized fluctuating Boussinesq equations we derive an expression for the structure factor of fluids in stationary convection-free thermal nonequilibrium states, taking into account both gravity and finite-size effects. It is demonstrated how the combined effects of gravity and finite size causes the structure factor to go through a maximum value as a function of the wave nu...
متن کاملInvestigation on Instability of Rayleigh-Benard Convection Using Lattice Boltzmann Method with a Modified Boundary Condition
In this study, the effects of Prandtl number on the primary and secondary instability of the Rayleigh-Benard convection problem has been investigated using the lattice Boltzmann method. Two different cases as Pr=5.8 and 0.7 representing the fluid in liquid and gas conditions are examined. A body forces scheme of the lattice Boltzmann method was presented. Two types of boundary conditions in the...
متن کاملThermosolutal Convection of Micropolar Rotating Fluids Saturating a Porous Medium
Double-diffusive convection in a micropolar fluid layer heated and soluted from below in the presence of uniform rotation saturating a porous medium is theoretically investigated. An exact solution is obtained for a flat fluid layer contained between two free boundaries. To study the onset of convection, a linear stability analysis theory and normal mode analysis method have been used. For the ...
متن کاملReview: Stability of Transport and Rate Processes
About fifty years ago, the Turing instability demonstrated that even simple reactiondiffusion systems might lead to spatial order and differentiation, while the Rayleigh-Bénard instability showed that the maintenance of nonequilibrium might be the source of order in fluids subjected to a thermodynamic force above a critical value. Therefore, distance from global equilibrium in the form of magni...
متن کاملModal spectra extracted from nonequilibrium fluid patterns in laboratory experiments on Rayleigh-Bénard convection.
We describe a method to extract from experimental data the important dynamical modes in spatiotemporal patterns in a system driven out of thermodynamic equilibrium. Using a novel optical technique for controlling fluid flow, we create an experimental ensemble of Rayleigh-Bénard convection patterns with nearby initial conditions close to the onset of secondary instability. An analysis of the ens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 66 3 Pt 2B شماره
صفحات -
تاریخ انتشار 2002